Customer Care 2018-05-30T08:33:29+00:00

Customer Care :

Energy Solutions (Private) Limited – ESL, as a part of its Corporate Social Responsibility(CSR), operates a full- fledged Customer Care Centre. The Customer Care Centre makes available informative articles/literature and handbooks alongside free of cost Training Sessions on operational matters, quality control, continuous improvement and HSSE for its own employees and those of the corporate society, at large. ESL top management stands committed to make these a cornerstone of its business.

The training sessions are conducted at both our own or the Customer’s premises as per the customer’s requirements.

The information on the website is periodically updated and new articles are uploaded from time to time.

Please reach us at www.ESLpk.com/customer-care and keep watching for what is new.

Please note that the articles/literature listed below are for the purpose of training and awareness. No attempt should be made to use them as a substitute for expert technical help.

For an in-depth discussion(s) and customer specific solution(s), please contact us at:

customercare@eslpk.com or support@eslpk.com

Thanks and best regards
ESL Customer Care

Energy Solutions Private Limited (ESL)

Customer Care Articles – English :

Download Article in PDF

Dear Customer:

We are truly indebted to our long list of customers, which includes Coca Cola, Shell Pakistan, Allied Bank, Shaukat Khanum Hospital, Dow University of Health & Sciences, Mobilink, Pakistan Tobacco Company (BAT), Container Terminals, Shahtaj Textile, University of Engineering & Technology Lahore, Atlas Group, ABL, Pakistan Refinery, etc. These customers have motivated us to invest heavily towards the improvement of our ways of working.

This has led us to focus more intensely on safety, quality and training. We believe that only through continuous improvement (training), we can manage to work safely and deliver the right quality, too.

ESL has compiled a range of short articles for the benefit of its customers, employees, suppliers and society, at large. We will continue to update the information and add more from time to time. Please reach us at www.eslpk.com/CustomerCare.html and keep watching for what is new.

Please note that these articles are for the purpose of training and education. No attempt should be made to use them as a substitute for expert technical help.

For an in-depth discussion(s) and customer specific solution(s), please contact us at:

customercare@eslpk.com or support@eslpk.com.

Thanks and best regards,

ESL Customer Care

Energy Solutions Private Limited (ESL)


Download Article in PDF

Download Article in PDF


  1. The Safety Culture We Should Adopt? 1. A Safety Culture can be thought of as a set of values, beliefs, perceptions and behaviors that an organization espouses with respect to safety habits while conducting its business.

  1. Every organization has a safety culture, intentional or not so intentional. The important thing is:

a.Whether we want a particular safety culture and

b.What do we do to create it?

c.Whether we set ourselves goals to achieve it?


a.Communication is open at all levels of the organization and feedback is considered vital to improving safety processes.

b. Individuals at all levels focus on what should be done to prevent injuries or illnesses.

c. There is a commitment to safety as much as it is for the business.

d. People and their safety and health are considered important.

e. The focus is on the people, and the contribution to the bottom line is a natural outcome.

f. All personnel, especially senior managers, lead by example and demonstrate their commitment to safety by following all safety processes and procedures, just as they want their employees to do.

g.  Good habits are practiced both at work and away.


a. Communication is not open at all levels; employees’ feedback is considered neither important nor encouraged.

b. Safety rules are used as a stick to discipline and penalize.

c. Management may not follow safety rules (for example, not wearing seat belts, not abstaining from smoking in nonsmoking areas, not using Personal Protective Equipment (PPEs), using cell phone while driving, etc.).

  1. Focus on business results outweighs focus on safety.

  1. Safety is sermonized to create good safety records and documentation.

  1. Safety shutter is pulled down after office hours.

Download Article in PDF

Download Article in PDF



Every accident has a cost associated with it, which is always far higher than the investment made in avoiding it. That is why; all necessary measures must be adopted to prevent an accident both at work and away.

The costs that are involved because of an accident are both direct and indirect. The employee who loses his life, or is injured is the biggest sufferer. The organization also does not go unhurt. The costs associated with an accident are always more than just dollars and cents.

  1. Direct Costs for the Employee
  2. Lost wages and overtime
  3. Doctor & hospital bills

  1. Indirect Costs for the Employee
  2. Physical pain and suffering
  3. Mental agony
  4. Lost time with family and friends
  5. Loss of productivity on and off the job
  6. Relationship strain

  1. Direct Costs for the Employer
  2. Medical bills and workers’ compensation claims
  3. Legal costs
  4. Insurance costs
  5. Property damage costs
  6. Wages being paid for an ideal / injured worker

  1. Indirect Costs for the Employer
  2. Loss of a valuable employee
  3. Loss of productivity
  4. Replacement cost in terms of rehiring and retraining
  5. Equipment repair / replacement cost
  6. Police inquiries and / or court / katcheries
  7. Decrease in employee morale over the loss of an employee
  8. Fear amongst other employees, etc.

Download Article in PDF

Download Article in PDF



  • Various safety journals / periodicals, call attention to the role of leaders in HSSE:
  1. “Attitudes to health and safety are determined by the bosses, not the organization’s size”.
  2. “Health and safety is a key to success. Bosses who do not show direction in this area are failing in their duty as leaders and are not fulfilling their moral obligation, as a result damaging their own hard built organization”.
  3. “An organization will never be able to achieve the highest standards of health and safety management without the active involvement of the bosses”.
  4. “Health & Safety drive without involvement of boss is like a rudderless ship”.
  5. “Health and safety is a fundamental part of business. Companies need someone with passion and energy to ensure it stays at the core of the organization. This someone has to be from amongst the bosses”.


Provide strong and active leadership for HSSE. It requires:

Showing commitment to safety;

Establishing effective ‘downward’ communication systems and safety forums for gaining participation of all;


Treating health and safety management as important as business decisions.

Gain worker involvement. It requires:

Engaging the workforce in the promotion and achievement of safe and healthy conditions;

Effective ‘upward’ communication;

Providing quality training.


Assessment and review requires:

 Identifying and managing health and safety risks;

Accessing (and following) competent advice;

Monitoring, reporting & reviewing performance



When HSSE is not seen as a regulatory burden: it offers significant opportunities.

Benefits can include:

  • reduced costs and reduced risks
  1. employees’ absence and turnover rates are lower,
  2. accidents are fewer,
  3. the threat of legal action is lessened;
  • improved standing among suppliers and partners;
  • a better reputation as a responsible corporate citizen among investors, customers and communities;
  • increased productivity – employees are healthier, happier and better motivated secure



Health and safety law, in developed world, states that organizations must:

  • provide a “Safety Manual” – written health and safety policy (if they employ five or more people);
  • assess risks to employees, customers, partners and any other people who could be affected by their activities;
  • arrange for the effective planning, organization, control, monitoring and review of preventive and protective measures;
  • ensure they have access to competent health and safety advice;
  • Consult employees about their risks at work and current preventive and protective measures.


Failure to comply with these requirements can have serious consequences – for both organizations and individuals. Sanctions include fines, imprisonment and disqualification.




  • Health and safety should appear regularly on the agenda of their meetings.
  • One of the board members should be named as the health and safety ‘champion’.
  • The presence on the board of a health and safety director can be a strong signal that the HSSE is of strategic importance. 



Be existent and seen on the ‘shop floor’, following all safety measures yourself and addressing any breaches immediately.

  • Consider health and safety when deciding senior management appointments and / or promotions.
  • Enforce procurement standards for goods, equipment and services to help prevent the introduction of expensive health and safety hazards.
  • Assess the health and safety arrangements of partners, key suppliers and contractors – a safety week may serve as an apt reminder.

  • Identify and address the key issues and guard against time and effort being wasted on trivial risks and unnecessary bureaucracy.
  • Provide health and safety training to some or all of the top management to promote understanding and knowledge of the key issues in your organization.
  • Support worker involvement in health and safety.




  • Effectively monitor sickness absence and workplace health as a tool to ascertain underlying problems that could seriously damage performance or result in accidents and long-term illness.
  • The collection of workplace health and safety data can allow the boss to benchmark the organization’s performance against others in its sector.

  • Appraisals of senior managers can include an assessment of their contribution to health and safety performance.


  • As a boss ask for regular reports on the health and safety performance and actions of contractors.


  • Win greater support for health and safety by involving workers in monitoring.


  • Join the bandwagon of reputed organizations in which performance on health and safety is increasingly being recorded in annual reports to stakeholders.
  • Increase ‘shop floor’ visits to gather information for the formal review.
  • Celebrate, recognize and reward (R&R) good health and safety performance.



  1. In Sri Lanka, following the fatal injury of an employee maintaining machinery at a recycling firm employing approximately 30 people, a company director received a 12-month custodial sentence for manslaughter. LOTO was not followed. ‘Evidence showed that the director chose not to follow the advice of his health and safety advisor and instead adopted a complacent attitude, allowing the standards in his business to fall.’
  1. In Bangladesh, the managing director of a manufacturing company with around 100 workers was sentenced to 12 months’ imprisonment for manslaughter following the death of an employee who became caught in unguarded machinery. The judge made clear that whether the managing director was aware of the situation was not the issue: he should have known as this has always been known potential hazard.
  1. In India, a company employed ten, mostly young, temporary workers; they were not trained or equipped to safely remove the asbestos, nor warned of its risk. Its officers were fined a fortune, disqualified from holding any directorship for two years and ordered to pay hefty costs of prosecuting Court.


It can happen in India, Bangladesh and Sri Lanka. It happens in Pakistan too day-in-and-day-out. Bosses beware!!


Download Article in PDF

Download Article in PDF



There are three primary concerns associated with diesel fuel:

  1. Flammability:

Diesel is not as flammable as gasoline and others but it can catch fire and can be very difficult to extinguish. Do not smoke around diesel fuel.


  1. Skin Exposure:

Diesel fuel can be absorbed through the skin very easily. It can cause skin irritation, redness and even burns. If the diesel is not cleaned off, it will be adsorbed into the skin and cause symptoms identical to inhalation.

  1. Inhalation:

If diesel vapors are inhaled, it can cause dizziness, nausea and increased blood pressure, among other symptoms.

How to limit harmful effects of diesel?

  1. When fueling diesel powered vehicles or machinery, do so in a well-ventilated area.
  2. If machines especially generators are used indoors or in enclosed spaces, extra ventilation should be provided to remove diesel exhaust. Make sure exhaust of diesel generators is emitted away from the power plant and away from people.
  3. Wear appropriate gloves when working with diesel.
  4. Do not use vinyl or butyl rubber gloves with diesel, as they offer no protection.
  5. Maintain diesel vehicles / generators well and regularly keep an eye on exhaust / emission(s).

Download Article in PDF

Download Article in PDF



Safety Considerations

  1. General Hazards
  2. Installation, repair and maintenance should always be in accordance with the manufacturer’s instructions and recommendations.
  3. Exhaust fumes emitted by generator sets contain poisonous gases like carbon monoxide that can be life threatening and result in death. Exhaust systems must be properly installed, adequate ventilation must be provided to ensure unobstructed flow of cooling and ventilating air, and emissions must be directed away from inhabited zones.
  4. The area around the generator must be clean and free of clutter and any combustible material that can be hazardous.
  5. The equipment must be regularly inspected and defective or damaged parts must be replaced in a timely manner.
  6. It is essential that the operating personnel remains alert at all times while working with the generator.
  7. The unit should not be opened or dismantled while it is functioning. Moving or hot parts should not be tampered with.
  8. Battery cables should be disconnected before proceeding to work on the generator to eliminate any possibility of an accidental start-up.
  1. Electrical Hazards
  2. All power voltage supplies should be turned off at the source while installing or servicing the generator.
  3. All electrical connections, such as wires, cables and terminals must be properly insulated and covered, and should not be touched with bare hands or while in contact with water. This is essential to prevent the occurrence of an electric shock.
  4. The frame of the generator and any external conducting parts should have proper grounding or earth wiring. This should never be disconnected.
  5. Wiring, cable and cord sets must be of the recommended capacity.
  1. Fire and Explosion Hazards
  2. Smoking in the vicinity of the equipment can be fatal.
  3. Fuel or oil spills around the generator, leakages from the unit’s fuel system and fuel supply lines and presence of combustible materials around the generator will pose a risk of explosion.
  4. A fire extinguisher should be readily available. Use of extinguishers that operate on carbon tetra-chloride is strictly prohibited since the fumes are toxic and can deteriorate the insulation on the wiring of generators.

Download Article in PDF

Download Article in PDF



SEIRI (Sort)

  • A clean place is a safe place.
  • Cleaning starts with sorting.
  • Sort any given population of items, activities, behaviors, attitudes and even entities, etc.
  • Separate important from non-important; useful from wasteful; critical from non-critical.
  • Classify into “Dos and Don’ts”.
  • Dispose of and discard the wasteful, unwanted items / activities / attitudes / behaviors.
  • Retain the important, useful and critical items / activities / entities / behaviors / attitudes.

First Step: Safety starts from cleaning

Cleaning starts from sorting

Sorting separates crucial from the clutter

SEITON (Set in Order)

  • Assign priorities to the chosen items.
  • Do a 80 / 20.
  • Do a Pareto analysis.
  • Rank critical items in accordance of their relative importance.
  • Separate few “vitals” from many “trivial”.
  • Assign a place to everything and assign everything to its designated place.

Second Step: Assign a place for everything – and put everything in its place.

Put the action where the money is.


SEISO (Shine)

  • Make “Continuous Improvement” in HSSE a way of life.
  • Make it a 24 x 7 affair, round the year, every year, year after year.
  • Don’t allow switch “off” and “on” and “fits and start” mentality.
  • Put it under your skins, in your blood, in your DNA
  • Check out before you step out
  • Consider HSSE an unending journey instead of a race, which has an end-point.
  • In a race there is a last lap which takes you to the victory, in HSSE every lap is a lap to victory
  • Gradually raise the bar / Take small incremental steps.
  • Even a small step is a big step.
  • Build a hierarchy of personal commitments, top down and share / review.
  • Learn from the achievers, support underperformers.
  • Bring change by Involving technology, creating HSSE systems, improving mindsets / behavior patterns

Third Step: Shine to surpass previous best

SEIKETSU (Standardize)

  • Ensure steps / actions to keep the shine.
  • Establish standards.
  • Develop checklists.
  • Talk not, Tick.
  • Use control charts, Poka Yoke
  • Develop jigs and fixtures or their equivalent(s).
  • Integrate with daily work management.

Fourth Step: Standardize to maintain consistency

and hold the gains.


SHITSUKE (Self Discipline)

  • Create an environment through slogans, posters and other visuals
  • Identify BIC performance and use benchmarking vis a vis BIC.
  • Lead by example (Be a Mr. Marriott).
  • Conduct audits to evaluate approach and results.
  • Recognize and reward.

Fifth Step: Walk the talk: Do what you say

Action speaks louder than the words

Download Article in PDF

Download Article in PDF



The following actions must be taken to ensure safety of people and our generators before we commence any work on them. Please also encourage relevant people to read ESL safety booklet in Urdu for better understanding of the subject.

Know jobsite hazards

To make employees aware of potential risks around the work area and help minimize or eliminate safety and health hazards e.g. Is the generator room airy? Is the exhaust properly vented? Etc.

Know your work procedures

  • To identify the best way of performing a job.
  • To determine:
  1. Are you qualified to perform the work?
  2. Do you know what is Lockout / Tagout (LOTO), how to isolate the site from others and what are emergency procedures?
  3. Do you have the correct PPE for the job you are performing and is it in proper working condition?
  4. Do you have all of the necessary tooling and testing equipment? Is it calibrated and in proper working condition?

Know the job specific project work plan (e.g. Gantt Chart)

  • Identify all activities
  • Define, describe and communicate the roles, responsibilities and location of each employee on the project. Who will do what?

Build a communication plan

  • Make someone responsible for communication and everyone must understand that he / she has to follow the qualified, nominated person.
  • The responsible person must ensure that it is safe prior to commencing work and that entire team understands system shut down, and re-start procedures.


Make emergency action plan and make it known

  • Make a plan and take steps to ensure the safety of your employees in the event of an emergency. The plan should include:
  1. Roles and responsibilities
  2. Threats, hazards and protective actions
  3. Means for locating family members in an emergency
  4. Emergency shutdown procedures, etc.
  • Once the employees have received the appropriate training, conduct regular drills as a reminder and post the Action Plan in an area that allows easy visibility.

Build a safety training culture

  • Prepare a safety manual for the specific conditions found on your jobsite.
  • Make checklists for recurring / recurrent jobs and when appropriate make use of local language.
  • Ensure equipment, tools and materials are being used for their intended purpose.
  • Always review the manufacturer’s Operation and Maintenance Manual before putting a machine to work.
  • Train employees on:
  1. Keeping track of others in the work zone and letting them know where you are at all times.
  2. Establishing eye contact before entering a work zone.
  3. Creating two-way communications before entering a work zone.
  4. Informing coworkers when leaving a work zone.
  • Receive emergency first aid training. If it is not applicable to you to be trained in these areas, make sure you know who is qualified to perform these tasks on your jobsite

Download Article in PDF

Download Article in PDF



Don’t start the work on generator without the following.

  1. Disconnect all energy sources before working on power generation equipment.
  2. Bring generators in a safe, de-energized, zero-stored-energy state.
  3. Do not trust “OFF” and “EMERGENCY STOP” push buttons on software and microprocessors as safety devices.
  4. Do not trust that a switch is open while in the “OFF” position. Always test and try operating the product prior to servicing as an alternative to ensuring the product is in a zero-stored-energy state.
  5. All AC and DC circuits entering and leaving the product shall be opened and secured with an appropriate LOTO device, thus electrically isolating the equipment to be serviced.
  6. Engine generator set packages shall have the battery cables removed from the batteries at the battery ends, and the battery cable ends shall be secured with an appropriate LOTO device.
  7. Gas and diesel fuel lines and air start lines shall be closed, and the valves shall be secured with an appropriate LOTO device.
  8. Any fuel or air between the valve and the engine shall be drained or vented.
  9. Remember to remove power from all attachments such as battery chargers, jacket water heaters and generator space heaters.
  10. Make sure there is no stray voltage anywhere on the package and that all voltage sources are properly secured in the “OFF” or “OPEN” position with an appropriate LOTO device.
  11. Open the product’s output circuit breaker and secure it with an appropriate LOTO device to prevent an external source from energizing the product or starting a generator set package’s engine.

Ensure proper grounding

Ensure the product is always properly grounded and the conductive surfaces surrounding the work are also bonded to the product’s grounding system to prevent any difference in electrical potential between the conductive surfaces and hence any chance of electric shock or electrocution.


Connect your work with that of others

  1. With multiple jobs going on at a jobsite, it is important to be aware of the other job tasks and associated processes that are being performed near or around you. Always look for the following:
  • Is there any work by others going on overhead?
  • What potentially dangerous work environment changes are others making that could jeopardize your safety?
  • What work environment changes are you making that could jeopardize the safety of others?



IMPORTANT – Generators and Distribution Systems Rated ABOVE 600 Volts:


Prior to working around exposed bus bars and load cable terminations, ensure all stored energy has been discharged from the generator windings, bus bars and cables. Medium and high voltage windings and cables store electrical energy that could cause death or personal injury. Wear proper PPEs and use properly rated tooling and equipment to discharge the windings, bus bars and cables.

Download Article in PDF

Download Article in PDF



  • Are you mentally and physically prepared to safely complete the work on the generator or are you fatigued such that your injury risk level is elevated?
  • Is there any moisture on your shoes and/or clothes?
  • Are you wearing the proper Personal Protective Equipment (PPE)?
  1. Head protection
  2. Eye protection
  3. Hearing protection
  4. Face shields
  5. Gloves
  6. Steel toe or metatarsal boots


  • Check your work area:
  1. What is in it?
  2. What is above and around you?
  3. How hot or cold is it?
  4. Is it humid?
  5. Is it a combustible atmosphere (i.e. dust from coal/grain/sugar or hydrogen from leaky batteries)?
  6. What would happen if you created an arc or spark in your immediate work area?
  7. Are overhead conductors exposed and grounded surfaces exposed around you?
  • Are you aware with the Scope of Work (SOW) to be performed on the generator?
  1. Have you informed the customer (responsible person) about your presence, nature of work and approximate duration?
  2. Do you satisfy yourself regarding quality of work by checking what has already been done?
  3. Do you make sure there will be no requirement for rework for an extended period of time?

Download Article in PDF

Download Article in PDF


  • Lockout is the primary means of preventing the unplanned release of hazardous energy.
  • For electrical workers, it often involves using a padlock to keep a switch in the “off” position. It may also be necessary to isolate the energy of moving parts, chemical reactions, etc., that can endanger lives. Lockout is a physical way to ensure that the energy source is de-energized, deactivated, or otherwise inoperable.

Lockout involves:

  1. identifying all energy sources that may affect the work and work area
  2. redirecting or stopping the energy from doing what it is normally intended to do
  3. physically preventing the accidental re-energizing of the system, and
  4. verifying zero energy.
  • It is important to control all energy systems involved in the work. A piece of equipment may have an electrically-operated component as well as hydraulic or pneumatic parts. Failure to control each energy system could jeopardize the safety of workers involved. In addition, gravity, momentum, and stored energy can present unexpected hazards.
  • Tags are an important part of a lockout. After attaching his or her personal lock, the worker attaches a tag to the lock. Tags are a means of communication. Tags are used to inform others that:
  1. The device is locked out,
  2. Who has locked it out, and
  3. Why?
  • Tagged devices and systems must not be re-energized without the authority of those named on the tag.

Forms of energy

  • When most people think of uncontrolled hazardous energy, they think of electricity. But electricians overseeing a lockout procedure need to consider a variety of energy sources. Here are the main types of energy.
  1. Electrical (electrical panels, generators, lighting systems, storage batteries, etc.)
  2. Mechanical—the energy of moving parts (flywheels, blades, fans, conveyor belts, etc.)
  3. Potential—stored energy that can be released during work. Examples of systems having potential energy include suspended loads, compressed air, coiled springs, chemical reactions, changing states (solid—liquid—gas), etc.
  4. Hydraulic (presses, cylinders, cranes, forklifts, etc.)
  5. Pneumatic (lines, compression tanks, etc.)
  6. Thermal (steam, hot water, fire, etc.)
  7. Chemical (flammable materials, corrosive substances, vapors, etc.)

As mentioned above, some equipment may involve more than one type of energy and pose unexpected hazards.

  • A de-energized electrical system must be discharged by short circuit and phase to ground. A temporary ground cable must be attached to the system and remain in place until work is completed.
  • Switches, power sources, pneumatics, hydraulics, computer-controlled sources, gravity-operated sources—all of these must be locked out by each worker involved and appropriately tagged.

Employers must have a lockout policy as part of their overall health and safety policy and program, with a clear objective of isolating (locking) and identifying (tagging) all energy sources before work begins.

The policy should also identify procedure to return to work after lock out.


Specific lockout procedures will vary depending on the work and the processes which must be shut down. The following chart can help you develop specific procedures.

 Download Article in PDF

Download Article in PDF


Many of our existing customers and / or prospective buyers rely upon ESL to provide them with accurate and informative answers to their electrical, engine, and generator related questions. This results in numerous questions every day, some of which are as under:

  1. What is the difference between KVA and KW?
  2. What is a power factor?
  3. What is the difference between standby, continuous, and prime power ratings?
  4. If I am interested in a generator that is not the voltage I need, can the voltage be changed?
  5. What does an Automatic Transfer Switch do?
  6. Can a generator I am looking at parallel with one I already own?
  7. Can you convert a 60 Hz generator to 50 Hz?
  8. How do I determine what size Generator I need?
  9. What is bumpless transfer of power between Generator set and Utility?
  10. What is load management and demand management?

1. What is the difference between kW and kVA?

The primary difference between kW (kilowatt) and kVA (kilovolt-ampere) is the power factor. kW is the unit of real power and kVA is a unit of apparent power (or real power plus re-active power). The power factor, unless it is defined and known, is therefore an approximate value (typically 0.8), and the kVA value will always be higher than the value for kW.

In relation to industrial and commercial generators, kW is most commonly used when referring to generators in the United States, and a few other countries that use 60 Hz, while the majority of the rest of the world typically uses kVA as the primary value when referencing generator sets.

To expand on it a bit more, the kW rating is essentially the resulting power output a generator can supply based on the horsepower of an engine. kW is figured by the horsepower rating of the engine times 0.746. For example, if you have a 500-horsepower engine it has a kW rating of 373. The kilovolt-amperes (kVA) are the generator end capacity. Generator sets are usually shown with both ratings. To determine the kW and kVA ratio the formula below is used.

8 (pf) x 625 (kVA) = 500 kW

2. What is a power factor?

The power factor (pf) is typically defined as the ratio between kilowatts (kW) and kilovolt amps (kVA) that is drawn from an electrical load, as was discussed in the question above in more detail. It is determined by the generator’s connected load. The pf on the nameplate of a generator relates the kVA to the kW rating (see formula above). Generators with higher power factors more efficiently transfer energy to the connected load, while generators with a lower power factor are not as efficient and result in increased power costs. The standard power factor for a 3-phase generator is 0.8.

3. What is the difference between standby, continuous, and prime power ratings?

Standby power generators are most often used in emergency situations, such as during a power outage. It is ideal for applications that have another reliable continuous power source like utility power. Its recommend usage is most often only for the duration of a power outage and regular testing and maintenance.

Prime power ratings can be defined as having an “unlimited run time”, or essentially a generator that will be used as a primary power source and not just for standby or backup power. A prime power rated generator can supply power in a situation where there is no utility source, as is often the case in industrial applications like mining or oil & gas operations located in remote areas where the grid is not accessible.

Continuous power is similar to prime power but has a base load rating. It can supply power continuously to a constant load but does not have the ability to handle overload conditions or work as well with variable loads. The main difference between a prime and continuous rating is that prime power gensets are set to have maximum power available at a variable load for an unlimited number of hours, and they generally include a 10% or so overload capability for short durations.

4. If I am interested in a generator that is not the voltage I need, can the voltage be changed?

Generator ends are designed to be either reconnectable or non-reconnectable. If a generator is listed as reconnectable the voltage can be changed, consequently if it is non-reconnectable the voltage is not changeable. 12-lead reconnectable generator ends can be changed between three and single-phase voltages; however, keep in mind that a voltage change from three phase to single phase will decrease the power output of the machine. 10 lead reconnectable can be converted to three phase voltages but not single phase.

5. What does an Automatic Transfer Switch do?

An automatic transfer switch (ATS) transfers power from a standard source, like utility, to emergency power, such as a generator, when the standard source fails. An ATS senses the power interruption on the line and in turn signals the engine panel to start. When the standard source is restored to normal power the ATS transfers power back to the standard source and shuts the generator down. Automatic Transfer Switches are often used in high availability environments such as data centers, manufacturing plans, telecommunication networks and so forth.

6. Can a generator I am looking at parallel with one I already own?

Generator sets can be paralleled for either redundancy or capacity requirements. Paralleling generators allows you to electrically join them to combine their power output. Paralleling identical generators will not be problematic but some extensive thought should go into the overall design based on the primary purpose of your system. If you are trying to parallel unlike generators the design and installation can be more complex and you must keep in mind the effects of engine configuration, generator design, and regulator design, just to name a few. For paralleling of generators of any make, model and manufacturer, please contact ESL at customercare@eslpk.com

7. Can you convert a 60 Hz generator to 50 Hz?

In general, most commercial generators can be converted from 60 Hz to 50 Hz. The general rule of thumb is 60 Hz machines run at 1800 Rpm and 50 Hz generators run at 1500 Rpm. With most generators changing the frequency will only require turning down the at rpm’s the engine. In some cases, parts may have to be replaced or further modifications made. Larger machines or machines already set at low Rpm are different and should always be evaluated on a case to case basis. We prefer to have ESL experienced technicians look at each generator in detail in order to determine the feasibility and what all will be required.

8. How do I determine what size Generator I need?

Getting a generator that can handle all your power generation needs is one of the most critical aspects of the purchasing decision. Whether you are interested in prime or standby power, if your new generator can’t meet your specific requirements then it simply won’t be doing anyone any good because it can put undue stress on the unit and even damage some of the devices connected to it. Determining exactly what size of generator to get is often very difficult and involves a number of factors and considerations.

9. What is bumpless transfer of power between Generator(s) and Utility?

There are some highly critical applications such as data centers, process industries, hospitals and operation theatres, etc., where disruption in electrical power is neither affordable nor permissible. In such applications either large UPS systems or additional devices are used on either side of the power outage which ensure that gensets are momentarily paralleled with utility while switching load from the generator to the mains or vice versa. This ensures that operations are not hurt or hindered in any way and continuous, uninterrupted supply of power is available at all times. For more details and / or incorporation of bumpless transfer features in existing system, please consult ESL at customercare@eslpk.com.

10. What is load management and demand management?

Load management is prioritization of loads in order of their critical nature and adding /shedding of the same in view of the available power from the generator(s). Demand management is automatic switching ON / OFF gensets in view of the load that is to be supported at any given point of time. For more details and / or incorporation of load and demand management panels in existing system, please consult ESL at customercare@eslpk.com

 Download Article in PDF

Download Article in PDF


  • The primary authorized individual assigned to de-energize and lock out equipment typically will be the one to return the equipment to service.
  • Before lockout devices and locks are removed, the work area is inspected to check that all crew members associated with the lockout have been cleared from any hazardous areas and that all are accounted for.
  • In addition, this person checks that all nonessential items have been removed and that the machine, equipment, or process is operationally intact.
  • Personnel who could be affected by re-energization and equipment start-up must be notified by the person assigned to return the equipment to service.
  • Once satisfied that the machine, equipment, or process is in a ready state, the primary authorized person removes any required locks, energy isolating devices, and tags.
  • After lockout devices have been removed a formal startup procedure would be implemented, if applicable.
  • If the equipment is to sit idle for a period of time, then a separate pre-start-up process should address the notification requirements.


  • Occasionally a worker leaves the jobsite and leaves a lock in place intentionally or accidentally and may not be present when the equipment needs to be re-energized. Removing the lock may expose that worker and possibly others to danger.
  • There must be a written procedure about how to remove lockout devices and tags safely. The procedure must cover locating the absent worker and obtaining permission to remove their lock.
  • It must also cover how, if the worker cannot be found, to validate if it is safe to cut the lock from the lockout device and re-energize the system. The person removing the lock should be identified in the lockout documentation.

 Download Article in PDF

Download Article in PDF


Why Diesel?

Thanks to the invention of Rudolph Diesel, the diesel engine has proved to be extremely efficient and cost effective. In Pakistan, Diesel fuel is priced moderately higher than gasoline but diesel has a higher energy density, i.e., more energy can be extracted from diesel as compared with the same volume of gasoline. Therefore, diesel engines in automobiles provide higher mileage, making it an obvious choice for heavy – duty transportation and equipment. Diesel is heavier and oilier compared with gasoline and has a boiling point higher than that of water.

How Does a Diesel Engine Work?

The distinction lies in the type of ignition. While gasoline engines operate on spark ignition, diesel engines employ compression-ignition for igniting the fuel. In the latter, air is drawn into the engine and subjected to high compression that heats it up. This results in a very high temperature in the engine, much higher than the temperature attained in a gasoline engine. At peak temperature and pressure, diesel that is let into the engine ignites on account of the extreme temperature.

Why is the compression ratio of diesel engine higher than gasoline engine?

In a diesel engine, air and the fuel are injected into the engine at different stages, as opposed to a gas engine where a mixture of air and gas are introduced. Fuel is injected into the diesel engine using an injector whereas in a gasoline engine, a carburetor is used for this purpose. In a gasoline engine, fuel and air are sent into the engine together, and then compressed. The air and fuel mixture limits fuel compression, and hence the overall efficiency. A diesel engine compresses only air, and the ratio can be much higher. A diesel engine compresses at the ratio of 14:1 up to 25:1, whereas in a gasoline engine the compression ratio is between 8:1 and 12:1. After combustion, the combustion by-products are removed from the engine through the exhaust. For starting during cold months extra heat is provided through ‘glow plugs’.

What are different versions of diesel engines?

Diesel engines can either be two cycle or four cycle and are chosen depending on mode of operation. Air-cooled and water-cooled engines are the variants to be chosen appropriately. It is preferable to use a liquid-cooled generator as it is quiet in operation and has evenly controlled temperature.

What are the advantages of a Diesel Engine?

The diesel engine is much more efficient and preferable as compared with gasoline engine due to the following reasons:

  1. Modern diesel engines have overcome disadvantages of earlier models of higher noise and maintenance costs. They are now quiet and require less maintenance as compared with gas engines of similar size.
  2. They are more rugged and reliable.
  3. There is no sparking as the fuel auto-ignites. The absence of spark plugs or spark wires lowers maintenance costs.
  4. Fuel cost per Kilowatt produced is thirty to fifty percent lower than that of gasoline engines.
  5. A 1500 rpm water cooled diesel unit operates for 12,000 to 30,000 hours before any major maintenance is necessary.

What are the Applications & Uses for Diesel Engines?

Diesel engines are commonly used as mechanical engines, power generators and in mobile drives. They find wide spread use in locomotives, construction equipment, automobiles, and countless industrial applications. Their realm extends to almost all industries and can be observed on a daily basis if you were to look under the hood of everything you pass by. Power generation for prime or standby backup power is the major application of today’s diesel generators.

Usage of diesel engines in Power Generators

Diesel powered generators, or electrical generator sets, are used in countless industrial and commercial establishments. The generators can be used for small loads, such as in homes, as well as for larger loads like industrial plants, hospitals, and commercial buildings. They can either be prime power sources or standby/back-up power sources. They are available in various specifications and sizes. Diesel generator sets rating 5-30KW are typically used in simple home and small office(s) applications. Industrial applications cover a wider spectrum of power ratings (from 30 kW to 6 Megawatts) and are used in numerous industries throughout the globe. For
Domestic use, single-phase power generators are sufficient. Three-phase power generators are primarily used for industrial purposes.

 Download Article in PDF

Download Article in PDF


How does an Alternator produce electricity?

The alternator is the part of the generator that produces the electrical output from the mechanical input supplied by the engine. It contains an assembly of stationary and moving parts encased in a housing. The components work together to cause relative movement between the magnetic and electric fields, which in turn generates electricity.

(a) Stator – This is the stationary component. It contains a set of electrical conductors wound in coils over an iron core.

(b) Rotor / Armature – This is the moving component that produces a rotating magnetic field in any one of the following three ways:

(i) By induction – These are known as brushless alternators and are usually used in large generators. An alternator that does not use brushes requires less maintenance and also produces cleaner power.

(ii) By permanent magnets – This is common in small alternator units.

(iii) By using an exciter – An exciter is a small source of direct current (DC) that energizes the rotor through an assembly of conducting slip rings and brushes.

The rotor generates a moving magnetic field around the stator, which induces a voltage difference between the windings of the stator.

This produces the alternating current (AC) output of the generator.

What is a Voltage Regulator and how does it function?

As the name implies, this component regulates the output voltage of the generator. The mechanism is described below against each component that plays a part in the cyclical process of voltage regulation.

  1. Voltage Regulator: Conversion of AC Voltage to DC Current – The voltage regulator takes up a small portion of the generator’s output of AC voltage and converts it into DC current. The voltage regulator then feeds this DC current to a set of secondary windings in the stator, known as exciter windings.
  2. Exciter Windings: Conversion of DC Current to AC Current – The exciter windings now function similar to the primary stator windings and generate a small AC current. The exciter windings are connected to units known as rotating rectifiers.
  3. Rotating Rectifiers: Conversion of AC Current to DC Current – These rectify the AC current generated by the exciter windings and convert it to DC current. This DC current is fed to the rotor / armature to create an electromagnetic field in addition to the rotating magnetic field of the rotor / armature.
  4. Rotor / Armature: Conversion of DC Current to AC Voltage – The rotor / armature now induces a larger AC voltage across the windings of the stator, which the generator now produces as a larger output AC voltage.

This cycle continues until the generator begins to produce output voltage equivalent to its full operating capacity. As the output of the generator increases, the voltage regulator produces less DC current. Once the generator reaches full operating capacity, the voltage regulator attains a state of equilibrium and produces just enough DC current to maintain the generator’s output at full operating level.

When you add a load to a generator, its output voltage dips a little. This prompts the voltage regulator into action and the above cycle begins. The cycle continues till the generator output ramps up to its original full operating capacity.

 Download Article in PDF

Customer Care Articles – Urdu :

Safety Of Our People And Family. (Urdu)


HSSE Training And Awareness (Urdu)


The Safety Culture We Should Adopt? (Urdu)


Why Should We Invest In Avoiding An Accident? (Urdu)


Safety Concerns While Handling Diesel (Urdu)


Five Approach To Our HSSE Commitment (Urdu)


Safety Of Our Generators And Our Personnel (Urdu)


Actions Which Must Precede Start Of Work On Generator (Urdu)


Why Use Diesel Generators (Urdu)


Important Considerations Before You Make A Generator Buying Decision (Urdu)


Defensive Driving Techniques (Urdu)


Our Clients

Energy Solutions (Pvt.) Limited

Our customers’ list reflects the quality of our products and our intense desire (and ability) to provide quality services.


Only takes a few seconds!