

2018 A different kettle of fish

JANUARY

A gas generator is quite unlike a diesel generator and is a different kettle of fish. What is sauce for the goose is not the sauce for the gander.

They are different in terms of:

- a. Types of application
- b. Power / volume ratios
- **Ignitions systems**
- **Compression ratios**
- **BMFPs**
- Hours to overhaul
- Oil change intervals
- h. Response to single step torque loads
- Minimum average load permissible and why?

The list goes on----

More information is available in ESL Training book and also covered in our "Meet & Treat" sessions.

Energy Solutions (Pvt.) Limited www.eslpk.com | \$\cong \text{111-222-ESL (375)} | \$\cong \text{+92-308-2572-ESL (375)}\$

CUMMINS	GAS	GEN	ERAT	ORS -	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption	0.25	0.26	0.26	0.24	0.23	0.23	0.23

2018 JANUARY

(Nm³/k\	Whe) 0.23	0.20 0	20 0.24	0.23	0.23	
MON	TUE	WED	THU	FRI	SAT	SUN
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

■ Shaukat Khanum Hospital

A thing of beauty is

۔ خوبصورت بات،رہے یاد، تاحیات۔۔۔

FEBRUARY a joy forever

CUMM	IINS GA	AS GEN	IERAT	ORS -	AT A G	SLANCE		
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW	
Туре		lue, High P ngine driv			THE RESIDENCE OF THE PARTY OF T	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	Fuel Models water pumps	
Methane Number	78	63	71	80	70	71	76	
Wethane Number	L	Cum	nmins genera	tors are ideal	for low qualit	y gas		
BMEP (Bar)	16.0	14.0	16.0	18.0	16.5	19.2	21.2	
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.8%	43.8%	
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%	
Total Efficiency	Highest efficiency as compared with other brands							
Fuel Consumption	0.25	0.26	0.26	0.24	0.23	0.23	0.23	
(Nm³ / kWhe)	Fuel l	HV ~ 36000	kJ / Nm³ (For	actual fuel co	nsumption at	site, please see	k assistance)	
Lube Oil Consumption (liters / hour)	0.2	0.5	0.5	0.5	0.2	0.25	0.3	
Torque Load Capability	50%	75%	75%	10 ~ 15%	10 ~ 15%	10 ~ 15%	10 ~ 15%	

Additional Features

- · Larger engines per MW
- Lower maintenance / longer overhaul intervals than contemporary products
- Sulfur resistant after cooler cores
- Excellent single-step-load acceptance capability
- · Ideal for cogeneration
- Highest total efficiencies (not matched by competitors)
- No or low deration at high temperatures and altitudes
- · Start large motors like diesel engines

Energy Solutions (Pvt.) Limited

⊕ www.eslpk.com | 111-222-ESL (375) | +92-308-2572-ESL (375)

CUMMINS	GAS	GEN	ERAT	ORS	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	18
FEBR	JARY

(INIII) KV						
MON	TUE	WED	THU	FRI	SAT	SUN
			1	2	3	4
5 Kashmir Day	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28				

■ Three 2000 kWe, 11 kV Tetra Pak Application

MARCH

ADVANTAGES OF GAS GENERATORS **SAN**

Gas generators are designed to operate at 100% load. They are meant for base load applications, which is a cakewalk for them.

Gas generators can also easily achieve overhaul intervals of five to six times those of diesel generators.

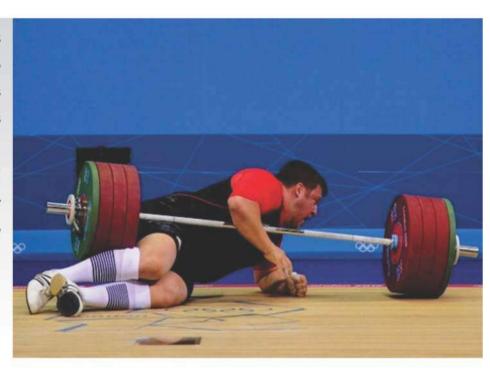
Similarly, oil change is also required after ten to fifteen times the change interval of diesel generators. So easy like a piece of cake, isn't it.? To know more, get hold of a copy of our training book.

CUMMINS	GAS	GEN	ERAT	ORS .	- AT	A GL	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	18
MAF	CH

(IVIII / KV	whe)					
MON	TUE	WED	THU	FRI	SAT	SUN
			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23 Pakistan Day	24	25
26	27	28	29	30	31	

■ Public Sector Organization


Achilles' heel

کزوری اگرنے کا سبب ۔

APRIL

Unlike diesel generators, gas generators are cut to the quick when called upon to handle heavy load of large motors. This is the biggest disadvantage of most gas generators.

Where the others falter, fumble and fail, Cummins gas generator is probably "ONE" exception. For reasons, please see our training book.

Energy Solutions (Pvt.) Limited www.eslpk.com | \$\cong \text{111-222-ESL (375)} | \$\cong \text{+92-308-2572-ESL (375)}\$

CUMMINS	GAS	GEN	ERAT	ORS	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	0 :	1	B
A	PF	RIL	
			-

(IVIII / KV	VIIE)					
MON	TUE	WED	THU	FRI	SAT	SUN
30						1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

■ ATS Synthetic Private Limited

MAY

Gas generators are generally poor in handling torque loads. They stutter, stumble and ultimately stop while starting large, heavy motors. They also do poorly when loads are suddenly withdrawn.

When it comes to handling torque loads, the above phrase truly applies to them. But then how do Cummins Gas Generators tackle torque loads??

Please seek answers in our "Meet & Treat" sessions.

CUMMINS	GAS	GEN	ERAT	ORS	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	18
	AV
IVI	AY

(Nm ³ /k	Whe)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
MON	TUE	WED	THU	FRI	SAT	SUN
	Labour Day	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31			

Shahtaj Textile Limited

2018

Chips of the same block

• ایک ہی تھیلی کے چٹے ہٹے!۔

JUNE

Cummins diesel and gas engines are equally good and strong products.

ESL is trying its best to secure the rightful place for Cummins gas generators in Pakistan. The day is not far when both will enjoy equal and enormous success (IA).

CUMMINS	GAS	GENI	ERAT	ORS -	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	18
	NIE
JU	NE

(INIII / K				The second secon		
MON	TUE	WED	THU	FRI	SAT	SUN
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15 *	16 *	17
18	19	20	21	22	23	24
25	26	27	28	29	30	

^{*}Subject to the sighting of moon.

■ Shahtaj Textile Limited

Cummins showcases two types of gas generators.

- a. High performance or high torque models likened to Land Cruiser
- b. High efficiency models likened to Ferrari

Land Cruiser symbolizes power, strength and performance while Ferrari symbolizes efficiency.

Whether you buy a Cummins Land Cruiser or a Cummins Ferrari, you will relish its taste for ever and would long for more!

CUMMINS	GAS	GENI	ERAT	ORS	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

2018	8
IIIIV	4
JULY	3

(INIII) K	VVII.E)					
MON	TUE	WED	THU	FRI	SAT	SUN
30	31					1
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29

■ University of Engineering & Technology (UET)

2018

An ounce of demonstration is better

المحتنكن كوآرسى كيا؟ _

AUGUST than tons of description

SEFING IS BELIEVING!!!

Customers using Cummins gas engines know that they can handle large torque loads in the blink of an eye. In one application in a textile mill a 1750 kW Cummins gas generator is handling torque load of 600 ~ 800 kW motor with effortless ease, just like diesel engines. Cummins gas generators often do away with the need of buying two sets. Just one Cummins gas generator is often enough to handle torque loads. Please contact ESL for a demonstration because seeing is believing.

Energy Solutions (Pvt.) Limited www.eslpk.com | \$\cong \text{111-222-ESL (375)} | \$\cong \text{+92-308-2572-ESL (375)}\$

CUMMINS	GAS	GENI	ERAT	ORS -	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

201	1 0
AUGI	

(IMM.)	MAILE)					
MON	TUE	WED	THU	FRI	SAT	SUN
		1	2	3	4	5
6	7	8	9	10	11	12
13	14 Independence Day	15	16	17	18	19
20	21	22* Eid ul-Azha	23 * Eid ul-Azha	24	25	26
27	28	29	30	31		

^{*}Subject to the sighting of moon.

■ Factory Fly-in to Cummins, UK (2017)

Energy Solutions (Pvt.) Limited

As fit as a fiddle

برگھڑی تیار کا مران ہیں ہم!

SEPTEMBER

A properly maintained Cummins gas generators when subject to a minimum 70% load always remain as fit as a fiddle. It can "practically" attain the following hours to overhaul intervals.

1 st Top	15,000 Hours
2 nd Top	30,000 Hours
Inframe	45,000 Hours
3 rd Top	60,000 Hours
4 th Top	75,000 Hours
Major	90,000 Hours

CUMMINS	GAS	GENI	ERAT	ORS -	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

2018
SEPTEMBER
DEL I EINIDEL

(IVIM- / K	whe)	The state of the s				
MON	TUE	WED	THU	FRI	SAT	SUN
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20* Ashura 9th Muharram	21* Ashura 10th Muharram	22	23
24	25	26	27	28	29	30

^{*}Subject to the sighting of moon.

■ University of Engineering & Technology (UET)

2018

Rome was not built in a day

م مخیلی پر سرسول نہیں جمتی

OCTOBER

Service is the forte of ESL. It has taken ESL a very long time to reach to this stage. We will leave no stone unturned to ensure that our Cummins gas customers not only feel satisfied but delighted with our 24 by seven presence, availability of parts, continuous improvement efforts, backup generators, etc.

S	Safe	Safety first
E	Empathetic	Putting your feet in customers' shoes and feeling their pain
R	Responsive	Performance which responds to customers' needs with speed and excellence
V	Virtuous	Performance which is conscientiously, morally and ethically right
	Innovative	Performance different than the others
С	Compliant	Performance meeting with community, country and customers' requirement
Ε	Effective	Performing the right things, efficiently, timely, consistently and cost effectively

SERVICE at ESL stands for Safe, Empathetic, Responsive, Virtuous, Innovative, Compliant and Effective.

Energy Solutions (Pvt.) Limited

CUMMINS	GAS	GEN	ERAT	ORS .	- AT	A GL	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ /kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	1	18	3
OCT	O	BE	R

(IAIII \ K)	viie)					
MON	TUE	WED	THU	FRI	SAT	SUN
l	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Dow University of Health Sciences (DUHS) OJHA Campus

■ تندُیء بادِمخالف سے نہ گھبراا ہے عقاب MOVEMBER

Ret going when going gets tough

یہ تو چلتی ہے تجھے او نیجا اُڑا نے کے لیے

Cummins gas generators stand by you in thick and thin: rain or shine: fire or water. They never leave you high and dry.

Cummins high torque series is known to perform well with minimum deration at high altitudes and high temperatures. They also work well at low methane numbers especially in our winters. After cooler cores are also not affected by Sulphur in the gas. For an in depth knowledge on how and why engines derate and why gas engines derate more than diesel engines, please contact ESL.

Energy Solutions (Pvt.) Limited www.eslpk.com | \$\cong \text{111-222-ESL (375)} | \$\cong \text{+92-308-2572-ESL (375)}\$

CUMMINS	GAS	GENI	ERAT	ORS .	- AT	A GL	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	18
NOVE	EMBER

MON	TUE	WED	THU	FRI	SAT	SUN
115			1	2	3	4
5	6	7	8	9	10	11
12	13	14	15	16	17	18
19	20	21* Prophet's (S.A.W.) Anniversary	22	23	24	25
26	27	28	29	30		

^{*}Subject to the sighting of moon.

■ Cummins 1160 kW High Torque Automotive Application

Killing two birds with one stone

• إك پنته، دوكاج!

DECEMBER

CO-GENERATION!

Gas Generators are often used for generating electricity as well as heat for absorption chilling. Cummins gas generators are specially known for their very high total efficiencies amongst all contemporary products. Cummins high torque generators (C1540 & C1750) allow recovery of heat from LT circuit also. This heat can be used for domestic heating or heating feed water for boilers.

	ple using Cummins High Torque, C1540N5 generator (D-3293d)
	As per data sheet
Total Fuel Input	4094 KW
Engine Output	1584 KW
Generator Output (100%)	1540 KW
Heat rejected in HT circuit	502 KW
Heat rejected in LT circuit	468 KW
Total Heat Rejected to the cooling system	970 KW
Exhaust flow from Specification Sheet	2.48 KG/S
Exhaust Stack Temperature	523 °C
Available Exhaust Heat at 120 °C (248 °F)	= Specific Heat of Exhaust Gas x Total Exhaust Flow x Δ T = 1.107 KJ / KG °C x 2.48 KG / S x (523-120) = 1106.4 KW
Total Recoverable Heat Energy	= Total heat rejected to cooling system + Available exhaust heat at 120 °C = 970+1106 = 2076 KW
Recoverable Heat in % =Thermal Efficiency	= 2076 / 4094 x 100 = 50.7%
Electrical Efficiency	= (1540 / 4094) x 1.015* = 38.2%
Total Efficiency	= Electrical Efficiency + Thermal Efficiency = 38.2%+50.7% = 88.79%
Total Efficiency	88.7%

*1.5% added to account for power consumed by water pumps and draw parity with all other suppliers

Energy Solutions (Pvt.) Limited

CUMMINS	GAS	GENI	ERAT	ORS -	- AT	A GLA	ANCE
Power (Kilowatt)	1160kW	1540kW	1750kW	2000kW	1200kW	1400kW	1540kW
Electrical Efficiency	39.3%	37.6%	38.9%	41.0%	42.8%	43.5%	43.8%
Total Efficiency	87.9%	88.3%	87.8%	89.0%	90.1%	90.3%	90.3%
Fuel Consumption (Nm³ / kWhe)	0.25	0.26	0.26	0.24	0.23	0.23	0.23

20	1	I	:	}
DECE	M	B	E	R

MON	TUE	WED	THU	FRI	SAT	SUN
31					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25 Christmas & Quaid-e-Azam Day	26	27	28	29	30

■ CHP Application (Electricity: 1250 kW, Steam: 2200 Pounds, Hot Water: 30 gal/min)

Calendar 2019

	January									
Su	Мо	Tu	We	Th	Fr	Sa				
		1	2	3	4	5				
6	7	8				12				
13	14	15	16	17	18	19				
20	21	22	23	24	25	26				
27	28	29	30	31						

February									
Su	Su Mo Tu We Th F								
					1	2			
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
17	18	19	20	21	22	23			
24	25	26	27	28					
1									

March									
Su	Мо	Tu	We	Th	Fr	Sa			
31					1	2			
3	4	5	6	7	8	9			
10	11	12	13	14	15	16			
17	18	19	20	21	22	23			
24	25	26	27	28	29	30			

May										
Su	Мо	Tu	We	Th	Fr	Sa				
			1	2	3	4				
5	6	7	8	9	10	11				
12	13	14	15	16	17	18				
19	20	21	22	23	24	25				

26 27 28 29 30 31

June								
Su	Мо	Tu	We	Th	Fr	Sa		
30						1		
2	3	4	5	6	7	8		
9	10	11	12	13	14	15		
16	17	18	19	20	21	22		
23	24	25	26	27	28	29		

July									
Мо	Tu	We	Th	Fr	- 23				
1	2	3	4	5	6				
8	9	10	11	12	13				
15	16	17	18	19	20				
22	23	24	25	26	27				
29	30	31							
	1 8 15 22	Mo Tu 1 2 8 9 15 16 22 23	Mo Tu We 1 2 3 8 9 10 15 16 17	Mo Tu We Th 1 2 3 4 8 9 10 11 15 16 17 18 22 23 24 25	Mo Tu We Th Fr 1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26				

			ugu			
Su	Мо	Tu	We	Th	Fr	Sa
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

September									
Su	Мо	Tu	We	Th	Fr	S			
1	2	3	4	5	6	7			
8	9	10	11	12	13	1			
15	16	17	18	19	20	2			
22	23	24	25	26	27	28			
29	30								

October									
Su	Мо	Tu	We	Th	Fr	Sa			
		1	2	3	4	5			
6	7	8	9	10	11	12			
13	14	15	16	17	18	19			
20	21	22	23	24	25	26			
27	28	29	30	31					

	Su	Мо	Tu	We	Th	Fr	Sa
						1	2
	3	4	5	6	7	8	9
	10	11	12	13	14	15	16
2	17	18	19	20	21	22	23
8	24	25	26	27	28	29	30

November

December											
Su	Мо	Tu	We	Th	Fr	Sa					
1	2	3	4	5	6	7					
8	9	10	11	12	13	14					
15	16	17	18	19	20	21					
22	23	24	25	26	27	28					
29	30	31									